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LINEAR ONE FORM DEFORMATION OF SPRAYS

S. G. ELGENDI

Abstract. In this paper, the linear one form deformation of a flat spray is investigated. The
metrizability of the deformation spray is characterized. New projectively flat Reimannain metrics
are obtained. These new metrics are not, generally, isometric to the Klein metric via affine

transformations. New Finsler solutions for Hilbert’s fourth problem are constructed. Various
examples are studied.

1. Introduction

The notion of sprays was introduced by W. Ambrose et al. [1] in 1960. A system of second
order ordinary differential equations (SODE) with positively 2-homogeneous coefficients functions
can be shown as a second order vector field, which is called a spray. All sprays are associated
with a SODE and conversely, a spray can be associated with a SODE. If such a system introduces
the variational (Euler-Lagrange) equations of the energy of a Finsler metric, then it is said to be
Finsler metrizable and in this case the spray is the geodesic spray of the Finsler metric. The Finsler
metrizability problem for a spray S looking for a Finsler structure whose geodesics coincide with
the geodesics of S. The metrizability problem can be considered as a special case of the inverse
problem of the calculus of variation. Several interesting results on the metrizability problem can
be found in the literature, we refer, for example, to [5, 9, 12, 13, 16] and the references therein.

The geodesics of a Finsler structure F on an open subset U ⊂ R
n are straight lines if and

only if the spray coefficients of F are given in the form Gi = P (x, y)yi. Straight lines in U are
parametrized by σ(t) = f(t)a + b, where a, b ∈ R

n are constant vectors and f(t) > 0 is a positive
function. The regular case of Hilbert’s Fourth Problem is to characterize all locally projectively
flat Finsler metrics; that is, the metrics whose geodesics are straight lines on an open subset of Rn.
Beltrami’s theorem states that a Riemannian metric is locally projectively flat if and only if it has
constant sectional curvature. In Finslerian case, this is not true. There are non projectively flat
Finsler metrics of constant flag curvature. Flag curvature is an analogue of sectional curvature in
Finsler geometry.

Bucataru and Muzany ([6], [7]) characterized the sprays which are metrizable by Finsler metrics
of constant flag curvature κ.

In this paper, we introduce the linear one form deformation. For simplicity, we consider the
linear one form deformation of a flat spray; namely, S = S0 − 2βC and β(x, y) = ykbk(x) is a liner
one form on the manifold M . We study the Finsler metrizability of the deformation spray S. We
characterize the metrizability of S by a Finsler metric of constant flag curvature. We obtain a new
class of projectively flat metrics of constant flag curvature and hence new solutions for Hilbert’s
fourth problem.

The Klein metric on B
n ⊂ R

n is given by

F =

√
(1 − |x|2)|y|2 + 〈x, y〉2

(1− |x|2)2 , y ∈ TxB
n ≃ R

n.

The Klein metric F is projectively flat Riemannian metric with projective factor P = 〈x,y〉
1−|x|2 . It

is known that every locally projectively flat Riemannian metric is locally isometric to F . In this
paper, we obtained new class of projectivley flat metrics of constant flag curvature. This class is
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given by

F =

√
4h(x)cijyiyj − 4(cijxiyj)2 − 4〈c′, y〉cijxiyj − 〈c′, y〉2

(2(h(x)))2

and its projective factor is

P (x, y) = −2cijx
iyj + 〈c′, y〉
2(h(x))

,

where h(x) := cijx
ixj + 〈c′, x〉 + c, cij = cji, c, c

′ = (c1, c2, ..., cn) are constants. Starting by
the Klein metric, the general linear transformation, x to Ax + B and y to Ay where A is an
n×n invertible matrix and B is an arbitrary n× 1 matrix, generates projectively flat Riemannian
metrics. The obtained class of projectively flat metrics is not, generally, isometric to Klein metric
via affine transformations.

Since the deformation spray S of a flat spray S0 is always isotropic and in the case that the
curvature of S is non zero, then the metric freedom [10] of S is unique up to some constants.
Hence, in our case the deformation of a flat spray by the specific one form is metrizable by unique
metric. However, we construct new projectively flat Finsler metrics and hence Finsler solutions for
Hilbert’s fourth problem. Also, these solutions are new solutions for the system [3], [14]

(Φ±)xk = Φ(Φ±)yk , Φ± = P ±
√
−κF.

It is known that, [6], one of the conditions for a spray S with non-vanishing Ricci curvature to be
metrizable by a Finsler function of non-zero constant flag curvature is rank ddJ (Tr Φ) = 2n. As an
application of the deformation of a flat spray by a linear one form, we answer the following question:

Does any spray of non-vanishing Ricci curvature satisfy the condition rank ddJ (Tr Φ) = 2n?

By an example, we show that for a spray S, if S has non vanishing Ricci curvature, then the
rank of the form ddJ (Tr Φ) is not necessarily maximal; that is, the condition rank ddJ (Tr Φ) = 2n
is sharp for the metrizability of S.

2. Preliminaries

Let M be an n-dimensional manifold and (TM, πM ,M) be its tangent bundle and (T M,π,M)
the subbundle of nonzero tangent vectors. We denote by (xi) local coordinates on the base manifold
M and by (xi, yi) the induced coordinates on TM . The vector 1-form J on TM defined, locally,
by J = ∂

∂yi ⊗ dxi is called the natural almost-tangent structure of TM . The vertical vector field

C = yi ∂
∂yi on TM is called the canonical or the Liouville vector field.

A vector field S ∈ X(T M) is called a spray if JS = C and [C, S] = S. Locally, a spray can be
expressed as follows

(2.1) S = yi
∂

∂xi
− 2Gi ∂

∂yi
,

where the spray coefficients Gi = Gi(x, y) are 2-homogeneous functions in the y = (y1, . . . , yn)
variable. A curve σ : I → M is called regular if σ′ : I → T M , where σ′ is the tangent lift of σ.
A regular curve σ on M is called geodesic of a spray S if S ◦ σ′ = σ′′. Locally, σ(t) = (xi(t)) is a
geodesic of S if and only if it satisfies the equation

(2.2)
d2xi

dt2
+ 2Gi

(
x,

dx

dt

)
= 0.

An orientation preserving reparameterization t → t̃(t) of the system (2.2) leads to a new spray

S̃ = S − 2PC. The scalar function P ∈ C∞(T M) is 1-homogeneous and it is related to the new
parameter by

(2.3)
d2 t̃

dt2
= P

(
xi(t),

dxi

dt

)dt̃
dt
,
dt̃

dt
> 0.

Definition 2.1. Two sprays S and S̃ are projectively related if their geodesics coincide up to an

orientation preserving reparameterization. S̃ is called the projective deformation of spray S.
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A nonlinear connection is defined by an n-dimensional distribution H : u ∈ T M → Hu ∈
Tu(T M) that is supplementary to the vertical distribution, which means that for all u ∈ T M , we
have Tu(T M) = Hu(T M)⊕ Vu(T M).

Every spray S induces a canonical nonlinear connection through the corresponding horizontal
and vertical projectors,

(2.4) h =
1

2
(Id+ [J, S]), v =

1

2
(Id− [J, S])

Equivalently, the canonical nonlinear connection induced by a spray can be expressed in terms of
an almost product structure Γ = [J, S] = h− v. With respect to the induced nonlinear connection,
a spray S is horizontal, which means that S = hS. Locally, the two projectors h and v can be
expressed as follows

h =
δ

δxi
⊗ dxi, v =

∂

∂yi
⊗ δyi,

δ

δxi
=

∂

∂xi
−N j

i (x, y)
∂

∂yj
, δyi = dyi +N j

i (x, y)dx
i, N j

i (x, y) =
∂Gj

∂yi
.

The Jacobi endomorphism is defined by

Φ = v ◦ [S, h] = Ri
j

∂

∂yi
⊗ dxj =

(
2
∂Gi

∂xj
− S(N i

j)−N i
kN

k
j

)
∂

∂yi
⊗ dxj .

The two curvature tensors are related by

3R = [J,Φ], Φ = iSR.

The Ricci curvature, Ric, and the Ricci scalar, ρ ∈ C∞(TM) [2] and [15], are given by

Ric = (n− 1)ρ = Ri
i = Tr(Φ).

Definition 2.2. A spray S is called isotropic if the Jacobi endomorphism has the form

Φ = ρJ − α⊗ C,

where α is a semi-basic 1-form α ∈ Λ1(T M).

Due to the homogeneity condition, for isotropic sprays, the Ricci scalar is given by ρ = iSα.

Definition 2.3. A Finsler manifold of dimension n is a pair (M,F ), where M is a differentiable
manifold of dimension n and F is a map

F : TM −→ R,

such that:

(a): F is smooth and strictly positive on T M and F (x, y) = 0 if and only if y = 0,
(b): F is positively homogenous of degree 1 in the directional argument y: LCF = F ,

(c): The metric tensor gij =
∂2E

∂yi∂yj has rank n on T M , where E := 1
2F

2 is the energy function.

Since the 2-form ddJE is non-degenerate, the Euler-Lagrange equation

(2.5) ωE := iSddJE − d(E − LCE) = 0

uniquely determines a spray S on TM . This spray is called the geodesic spray of the Finsler
function. The ωE is called the Euler-Lagrange form associated to S and E.

Definition 2.4. A spray S on a manifold M is called Finsler metrizable if there exists a Finsler
function F such that the geodesic spray of the Finsler manifold (M,F ) is S.

Definition 2.5. The function F is said to be of scalar flag curvature if there exists a function
κ ∈ C∞(TM) such that

Φ = κ(F 2J − FdJF ⊗ C).

It follows that for a Finsler function F, of scalar flag curvature κ, its geodesic spray S is isotropic,
with Ricci scalar ρ = κF 2 and the semi-basic 1-form α = κFdJF .

Definition 2.6. A Finsler metric F = F (x, y) on an open subset U ⊂ R
n is said to be projectively

flat if all geodesies are straight lines in U . A Finsler metric F on a manifold M is said to be locally
projectively flat if at any point, there is a local coordinate system (xi) in which F is projectively
flat.
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From now on, we use the notations ∂i for the partial differentiation with respect to xi and ∂̇i
for the partial differentiation with respect to yi.

By [11], a Finsler metric F on an open subset U ⊂ R
n is projectively flat if and only if it satisfies

the following system of equations,

(2.6) yj ∂̇i∂jF − ∂iF = 0,

In this case, Gi = Pyi where P = P (x, y), the projective factor of F , given by P = ∂kFyk

2F .

3. Linear one form deformation

In this section, we consider the deformation spray S = S0 − 2βC, where S0 is a flat spray; that
is, S0 = yi∂i and β = bi(x)y

i is one form on M . By [4], one has the following

Lemma 3.1. For the deformation spray S = S0 − 2βC of a flat spray S0. The corresponding
horizontal projectors and Jacobi endomorphisms of the two sprays are related as follows:

(a): h = h0 − βJ − dJβC,
(b): Φ = (β2 − S0β)J − (βdJβ + dJ (S0β)− 3dh0

β)⊗ C,

Proposition 3.2. Let S = S0 − 2βC be a linear one form deformation of a flat spray S0 with
non-vanishing Ricci curvature. Then, the properties dJα = 0 and rank ddJ (Tr Φ) = 2n hold if and
only if

(a): ∂ibj − ∂jbi = 0, i.e bi is gradient (β is closed on M), and
(b): det(∂ibj + bibj) 6= 0.

Proof. Let dJα = 0, since dJα = −3dh0
dJβ, then we have

dh0
dJβ(∂i, ∂j) = ∂i∂̇jβ − ∂j ∂̇iβ = 0.

Using the fact ∂̇jβ = bj, we get ∂ibj − ∂jbi = 0, i.e bi is gradient.
Since Tr Φ = (n− 1)(β2 − S0β), then by a direct calculations and using that bi is gradient, we

obtain
ddJ(Tr Φ) = 2(n− 1)((∂ibj + bibj)dx

i ∧ dyj + (bi∂jβ − bj∂iβ)dx
i ∧ dxj).

Consequently, rank ddJ (Tr Φ) = 2n if det (∂ibj + bibj) 6= 0.
Conversely, if (a) and (b) are satisfied then the result follows. �

The above proposition together with [6] show the following

Corollary 3.3. Let S = S0 − 2βC be a linear one form deformation of a flat spray S0 with
non-vanishing Ricci curvature. Then, the following properties:

(P1): S is Finsler metrizable,
(P2): S is metrizable by a Finsler metric of non-vanishing scalar flag curvature,
(P3): S is Finsler metrizable by an Einstein metric,
(P4): S is metrizable by a Finsler metric of non-zero constant flag curvature,
(P5): S is Ricci constant,

are equivalent if and only if

(a): ∂ibj − ∂jbi = 0, i.e bi is gradient.
(b): det(∂ibj + bibj) 6= 0.

Now, we introduce one of the main results of this work.

Theorem 3.4. The linear one form deformation S = S0− 2βC, β(x, y) = ykbk(x), of a flat spray
S0, is metrizable by a Finsler function of constant flag curvature κ 6= 0 if and only if

(3.1) bk(x) = − 2cikx
i + ck

2(cijxixj + 〈c′, x〉+ c)
,

where cij = cji, c, c
′ = (c1, c2, ..., cn) are constants.

Proof. By [7], one can see that the spray S = S0 − 2βC is metrizable by a Finsler function of non
zero constant flag curvature if and only if

C1): dJα = 0, α is a semi-basic 1-form given by α = βdJβ + dJ (S0β)− 3dh0
β,

C2): dhρ = 0, ρ is the Ricci scalar given by ρ = β2 − S0β,
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C3): rank(ddJρ) = 2n.

Now, consider the deformation S = S0 − 2βC, where β = ykbk,

bk = − 2cikx
i + ck

2(cijxixj + 〈c′, x〉+ c)
.

Since dJα = −3dh0
dJβ, then we have

dh0
dJβ(∂i, ∂j) = ∂i∂̇jβ − ∂j ∂̇iβ = ∂ibj − ∂jbi.

Using the property that cij is symmetric, bi is gradient and therefore dJα = 0.
To calculate ρ, let’s compute S0(β) = yk∂kβ,

(3.2) S0(β) = −2h(x)cijy
iyj −

(
2cijx

iyj + 〈c′, y〉
)2

2(h(x))2
,

for simplicity, we use h(x) := cijx
ixj + 〈c′, x〉 + c. Using the formula of β together with (3.2), we

have

(3.3) ρ =
4h(x)cijy

iyj − 4(cijx
iyj)2 − 4〈c′, y〉cijxiyj − 〈c′, y〉2
(2h(x))2

.

Differentiating (3.3) with respect to ∂k and ∂̇k, we obtain:

(3.4)
∂kρ =

4(2cikxi+ck)
(

4(cijxiyj)
2

+4〈c′,y〉cijx
iyj+〈c′,y〉2

)

(2h(x))3

− 4cijy
iyj(2cikxi+ck)+8cijx

iyjciky
i+4〈c′,y〉ciky

i

(2h(x))2 ,

(3.5) ∂̇kρ =
8h(x)ciky

i−8cijx
iyjckrx

r−4ckcijx
iyj−4〈c′,y〉ckjx

j−2〈c′,y〉ck
(2h(x))2 .

Now, substituting from (3.3), (3.4) and (3.5) into dhρ = dh0
ρ− βdJρ− 2ρdJβ, we get dhρ = 0.

Putting ρij := ∂̇i∂̇jρ, then we get

ρij =
4cijh(x)− 4(cikx

k)(cjkx
k)− 2cicjkx

k − 2cjcikx
k − cicj

(2h(x))2
.

The condition C3) (regularity condition) is satisfied if det(ρij) 6= 0. Consequently, for appropriate
constants cij , ci and c such that det(ρij) 6= 0, we have a projectively flat Finsler metric of constant
flag curvature.

Conversely, let S be metrizable. Since the condition C1) is satisfied if and only if there exists
a locally defined, 0-homogeneous, smooth function g on Ω×R

n\{0}, Ω is open subset of Rn, such
that

dJβ = dh0
g.

Locally, we have

dJβ(∂i) = dh0
g(∂i) ⇒ ∂̇i(bjy

j) = ∂ig ⇒ bi = ∂ig.

Since bi is a function of x, then g(x, y) = g1(x) + g2(y), g2(y) is 0-homogenous function. Then, we
can write β = yibi(x) = S0(g) and bi(x) = ∂ig. The condition C2) is satisfied if and only if

dh0
ρ− S0(g)dJρ− 2ρdh0

g = 0.

Applying the above equation on ∂i and using that S0(h) = β and ρ = β2 − S0(β), we have

(3.6) ∂iρ− β∂̇iρ− 2ρ∂ig = 0.

Making use of β = yi∂ig and ρ = β2 − S0β, the function

(3.7) g(x, y) = −1

2
ln
(
cijx

ixj + 〈c′, x〉+ c
)
+ g2(y),

is a solution of (3.6). Differentiating (3.7) with respect to ∂k we have

(3.8) bk(x) = ∂kg = − 2cikx
i + ck

2(cijxixj + 〈c′, x〉+ c)
.

�

Since the relation between the Ricci scalar ρ and the Finsler function F of constant flag curvature
κ is given by ρ = κF 2, then have the following
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Proposition 3.5. With appropriate constants cij , c, c
′ = (c1, c2, ..., cn), the class

(3.9) F =

√
4h(x)cijyiyj − 4(cijxiyj)2 − 4〈c′, y〉cijxiyj − 〈c′, y〉2

(2h(x))2

introduces projectively flat metrics of non zero constant flag curvature. Therefore, we have new
solutions for Hilbert’s fourth problem.

As a special case, we have the following

Corollary 3.6. Taking cij = µδij, ci = 0, c = 1, then we get

P = − µ〈x, y〉
1 + µ|x|2 , Fµ =

√
(1 + µ|x|2)|y|2 − µ〈x, y〉2

(1 + µ|x|2)2 , κ = µ, F 2
µ = ρ/µ

and gij is given by

gij =
δij

1 + µ|x|2 − µxixj

(1 + µ|x|2)2 .

When µ = −1, F−1 is the well known Klein metric on the standard unit ball Bn ⊂ R
n.

Corollary 3.7. Let S = S0 − 2βC be a deformation of a flat spray S0,

β = − 2cijx
iyj + 〈c′, y〉

2(cijxixj + 〈c′, x〉+ c)
.

A necessary condition for the properties (P1)-(P5) to be equivalent is cij 6= 0.

Remark 3.8. The deformation of a flat spray by a linear one form gives the following advantages:
– It is a way to obtain projectively flat Riemannian metrics of non zero constant flag curvature,
– It gives new solutions to the system [3], [14]

(Φ±)xk = Φ(Φ±)yk , Φ± = P ±
√
−κF,

– It gives new solutions for Hilbert’s fourth problem.

It is known that, [6], one of the conditions for a spray S with non-vanishing Ricci curvature to be
metrizable by a Finsler function of non-zero constant flag curvature is rank ddJ (Tr Φ) = 2n. As an
application of the deformation of a flat spray by a linear one form, we answer the following question:

Does any spray of non-vanishing Ricci curvature satisfy the condition rank ddJ (Tr Φ) = 2n?

The following proposition shows that, for a spray S, if S has non vanishing Ricci curvature, then
the rank of the form ddJ (Tr Φ) not necessarily maximal; that is, the condition rank ddJ (Tr Φ) = 2n
is sharp for the metrizability of S.

Proposition 3.9. Let Φ the Jacobi endomorphism of a spray S , then we have:

(a): If rank ddJ (Tr Φ) = 2n, then S has non-vanishing Ricci curvature.
(b): If S has non-vanishing Ricci curvature, then rank ddJ (Tr Φ) is not necessarily maximal.

Proof. The proof of (a) is obvious, so we prove (b) only. The proof of (b) can be performed
by providing an example in which S has non-vanishing Ricci curvature and ddJ(Tr Φ) has not
maximal rank. Let

S = S0 − 2βC, β = − 〈c′, y〉
2(〈c′, x〉+ c)

, bi(x) = − ci
2(〈c′, x〉+ c)

,

where c′ = (c1, c2, ..., cn), ci and c are arbitrary constants. Since Tr Φ = Ric = (n− 1)(β2 − S0β),
Ric is the Ricci curvature. Then, we get

Ric = (1− n)
〈c′, y〉2

4(〈c′, x〉+ c)2
.

Since n 6= 1, we have Ric 6= 0. Straightforward calculations lead to

ddJ (Tr Φ) = 2(n− 1)(αijdx
i ∧ dyj + βijdx

i ∧ dxj),

where αij =
cicj

4(〈c′,x〉+c)2 . Then, ddJ (Tr Φ) has maximal rank if det(αij) 6= 0, but det(αij) = 0 and

moreover rank(αij) = 1, then the result follows. �
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4. Affine transformations of Klien metric

The Klein metric on B
n ⊂ R

n is given by

F−1 =

√
(1− |x|2)|y|2 + 〈x, y〉2

(1− |x|2)2 , P =
〈x, y〉
1− |x|2 , y ∈ TxB

n ≃ R
n.

The Klein metric F−1 is projectively flat Riemannian metrics. It is known that every locally
projectively flat Riemannian metric is locally isometric to F−1. Starting by the Klein metric, the
affine transformation, x to Ax+B and y to Ay where A is an n× n invertible matrix and B is an
arbitrary n× 1 matrix, produces projectively flat Riemannian metrics.

Theorem 4.1. The class (3.9) is not, generally, isometric to the Klein metric via affine transfor-
mations.

Proof. Consider the affine transformation x to Ax+B and y to Ay, where A is an n×n invertible
matrix and B is an arbitrary n× 1 matrix,

A =




a11 . . . a1n
...

. . .
...

an1 . . . ann


 , B =




b1
...
bn




The Klein metric transforms to

(4.1)

F =

√
H(x)(

∑n
k=1 akiakj)y

iyj + ((
∑n

k=1 akiakj)x
iyj)2 + 2〈B′, y〉(∑n

k=1 akiakj)x
iyj + 〈B′, y〉2

(H(x))2
,

whereH(x) := 1−(
∑n

k=1 akiakj)x
ixj−2(

∑n
k=1 akibk)x

i−|B|2, B′ = (B1, ..., Bn), Bi =
∑n

k=1 akibk.
Now, comparing the equations (3.9) and (4.1), we get

2cij = −
n∑

k=1

akiakj , ci = −
n∑

k=1

akibk, 2c = 1− |B|2.

Thus we get, formally, the class (3.9). So once you have the transformation then you obtain the
c′s, but if you have the c′s then the transformation not necessarily exist.

For example, let

A =

(
a11 a12
a21 a22

)
, B =

(
b1
b2

)
.

Then the constants c′s are given by

c11 = −1

2
(a211 + a221)

c22 = −1

2
(a212 + a222)

c12 = c21 = −1

2
(a11a12 + a21a22)

c1 = −(a11b1 + a21b2)

c2 = −(a12b1 + a22b2)

c =
1

2
(1 − b21 − b22).

So if the matrices A and B are given, then one can get the c′s but if the c′s are given, generally, the
above system is inconsistent. For instance, take c11 = c22 = 0, c12 = c21 = 1, c1 = 1, c2 = 1, c = 1,
we get a projectively flat metric and at the same time by substitution in the above system one
obtains inconsistent system. For this choice of the c′s, we have

F =

√
(8x1x2y1y2 − 4x2

1y
2
2 − 4x2

2y
2
1 + 4x1y1y2 − 4x1y22 − 4x2y21 + 4x2y1y2 − y21 + 6y1y2 − y22)

4(2x1x2 + x1 + x2 + 1)2
,
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and the projective factor is given by

β = −1

2

2x1y2 + 2x2y1 + y1 + y2
2x1x2 + x1 + x2 + 1

.

So one can say that the affine transformation of Klien metric is contained in (3.9) but not any
metric in (3.9) can be obtained by an affine transformation. �

Now, the question is

What is the isometry (transformation) between the klein metric and the class (3.9)?

5. Finsler solutions for Hilbert fourth problem and examples

Since the deformation spray S of a flat spray S0 is always isotropic and in the case which the
curvature of S is non zero, then the metric freedom [10] of S is unique up to some constants.
Therefore, in our case the deformation of a flat spray by the specific linear one form β = bi(x)y

i

where bi(x) given by (3.1) is metrizable by unique Riemannain metric given in (3.9). However,
in this section, we introduce some new projectively flat Finsler metrics and hence new Finsler
solutions for Hilbert’s fourth problem. Although, Lots of new projectively flat Finsler metrics can
be constructed, we will mention only two examples.

For simplicity we consider the following special case.

Corollary 5.1. Putting cij = λδij , we have

(5.1) F =

√
4λ(λ|x|2 + 〈c′, x〉+ c)|y|2 − 4λ2〈x, y〉2 − 4λ〈c′, y〉〈x, y〉 − 〈c′, y〉2

4(λ|x|2 + 〈c′, x〉+ c)2
,

is a class of projectively flat metrics with the projective factor

β = − 2λ〈x, y〉+ 〈c′, y〉
2(λ|x|2 + 〈c′, x〉+ c)

.

By making use of the above corollary, since β is closed one form on M and F is projectively flat
Riemannian metric, then we have the following example of projectively flat Finsler metric.

Example 1. The class of metrics

F =

√
4λ(λ|x|2 + 〈c′, x〉+ c)|y|2 − 4λ2〈x, y〉2 − 4λ〈c′, y〉〈x, y〉 − 〈c′, y〉2 + (2λ〈x, y〉+ 〈c′, y〉)

2(λ|x|2 + 〈c′, x〉+ c)

is new class of projectively flat Finsler metrics. Where

G
i
= P (x, y)yi, P (x, y) = − 2λ〈x, y〉+ 〈c′, y〉

2(λ|x|2 + 〈c′, x〉+ c)
+

(
F − λ|y|2

2F (λ|x|2 + 〈c′, x〉+ c)

)
.

Consequently, we have new Finsler solutions for Hilbert’s fourth problem.

By the help of [8] (Example 8.2.2, Page 156), we have another Finsler solution for Hilbert’s
fourth problem as follows.

Example 2. The metric

Θ(x, y) =
〈c′, y〉〈c′, x〉 − 4λ〈x, y〉

4cλ|x|2 − c2

+

√
16λ2c2(〈x, y〉2 − |x|2|y|2) + 〈c′, y〉2(〈c′, x〉2 + 4λ|x|2 − c2)− 8λc〈c′, y〉〈c′, x〉〈x, y〉+ 4λc3|y|2

4cλ|x|2 − c2

is Funk metric and, moreover, it is projectively flat with the projective factor P = Θ(x,y)
2 . Thus

Θ(x, y) is projectively flat with constant flag curvature − 1
4 .

Proof. Using (5.1), we have

F (0, y) = φ(y) =

√
4λc|y|2 − 〈c′, y〉2

4c2
.
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Define

Θ(x, y) = φ(y +Θ(x, y)x) =

√
4λc|y +Θ(x, y)x|2 − 〈c′, y +Θ(x, y)x〉2

4c2
.

Squaring both sides of the above equation and solving it for Θ, we get the required formula. Since
φ(y) is a Minkowski norm, then Θ(x, y) is Funk metric and it is projectively flat metric with the

projective factor P = Θ(x,y)
2 . �

The following example shows a one form deformation of a non flat spray which is not metrizable.

Example 3.
Let M = {(x1, x2) ∈ R

2 : x2 > 2} and S0 be a spray given by the coefficients

G1
0 :=

(y1)2

2x2
, G2

0 := 0,

and take β = y1+y2. Now consider the deformation S = S0−2βC. The new coefficients are given
by

G1 :=
(y1)2

2x2
+ y1(y1 + y2), G2 := y2(y1 + y2),

The spray S is isotropic and the coefficients of the nonlinear connection are given by

N1
1 =

y1

x2
+ 2y1 + y2, N2

1 = y1, N1
2 = y2, N2

2 = y1 + 2y2.

The horizontal basis is {h1, h2} where

h1 =
∂

∂x1
−
(
y1

x2
+ 2y1 + y2

)
∂

∂y1
− y2

∂

∂y2
,

h2 =
∂

∂x2
− y1

∂

∂y1
− (y1 + 2y2)

∂

∂y2
.

We have

v1 := [[h1, h2], h1] = −
(
((x2)2y1 + (x2)2y2 + x2y1 − y2x2 + y1

(x2)2

)
∂

∂y1

+

(
(x2)2y1(x2)2y2 + 2x2y1 + x2y2 + y1

(x2)2

)
∂

∂y2

v2 :=
[
[h1, h2], h2

]
= −

(
(x2)3y1 + (x2)3y2 + 2y1

(x2)3

)
∂

∂y1

+

(
(x2)2y1 + (x2)2y2 − x2y1 + 2y1

(x2)2

)
∂

∂y2
.

Being v1 and v2 linearly independent we have H = Span{h1, h2, v1, v2} = TTM , where H is
the holonomy distribution generated by the horizontal vectors and their successive Lie brackets.
Consequently, the Liouville vector field C ∈ H hence the spray is not metrizable.

The following example introduces a one form deformation of a flat spray which is not metrizable.

Example 4.
Let M = {(x1, x2) ∈ R

2 : x2 > 0} and S0 be a flat spray. So the coefficients are given by

G1
0 = G2

0 = 0,

and take β = y1+y2. Now consider the deformation S = S0−2βC. The new coefficients are given
by

G1 := y1(y1 + y2), G2 := y2(y1 + y2),

The spray S is isotropic and the coefficients of the nonlinear connection are given by

N1
1 = 2y1 + y2, N2

1 = y1, N1
2 = y2, N2

2 = y1 + 2y2.
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The horizontal basis is {h1, h2} where

h1 =
∂

∂x1
−
(
2y1 + y2

) ∂

∂y1
− y2

∂

∂y2
,

h2 =
∂

∂x2
− y1

∂

∂y1
− (y1 + 2y2)

∂

∂y2
.

We have

v1 := [h1, h2] = −
(
y1 + y2

) ∂

∂y1
+
(
y1 + y2

) ∂

∂y2
.

The successive Lie brackets of h1 and h2 produce no more linearly independent vectors and hence
the holonomy distribution H = Span{h1, h2, v1}. The metric freedom [10] of S is unique. Now we
can check if we have regular energy function metricizes S or not.

The spray S is Finsler metrizable if there exists a function E satisfying the following system of
partial differential equations

LCE = 2E, dhE = 0,

which can be written in the form

y1∂̇1E + y2∂̇2E − 2E = 0,

∂E

∂x1
−
(
2y1 + y2

) ∂E

∂y1
− y2

∂E

∂y2
= 0,

∂E

∂x2
− y1

∂E

∂y1
− (y1 + 2y2)

∂E

∂y2
= 0,

−
(
y1 + y2

) ∂E

∂y1
+
(
y1 + y2

) ∂E

∂y2
= 0.

The above system has the solution

E = C1e
4(x1+x2)(y1 + y2)2.

The matrix (gij) associated with E is singular and hence the spray is not metrizable. Here in this
example β is closed but det(∂ibj + bibj) = 0.
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